

PERIOPERATIVE EVALUATION AND MID-TERM OUTCOMES AFTER SURGICAL CORRECTION OF ALCAPA IN CHILDREN

NGUYEN MINH HAI, MD, PhD¹
DO NGUYEN TIN, MD, PhD^{1,2}
Associate Prof. VU MINH PHUC, MD, PHD^{1,2}
Associate Prof. NGUYEN THI THANH LAN, MD, PHD²
1. CHILDREN'S HOSPITAL 1, HCMC
2. UNIVERSITY OF MEDICINE AND PHARMACY AT HCMC

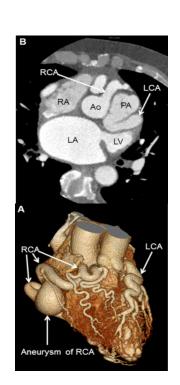
NỘI DUNG

1 INTRODUCTION

METHODS

RESULTS AND DISCUSSION

CONCLUSIONS

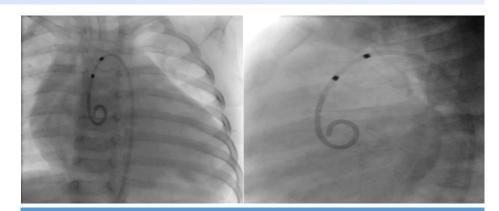


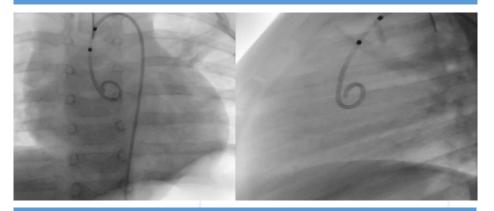
INTRODUCTION

ALCAPA (The anomalous origin of the left coronary artery from the pulmonary artery)

ALCAPA

- ✓ rare, 0.25-0.5%/CHD
- ✓ one of the most common causes of myocardial ischemia and infarction in children.
- "coronary steal" phenomenon, left-to-right shunt leads to abnormal left ventricular perfusion → severe myocardial ischemia, global left ventricular dysfunction, various mitral regurgitation, ventricular arrhythmias, sudden death.




INTRODUCTION ALCAPA



- ✓ Infant type: poor collaterals between RCA to LCA, 90% die before 1 year of age in untreated patients.
- ✓ Adult type: Abundant collaterals circulation, 90% die in the following years due to ventricular arrhythmias, ischemic cardiomyopathy.

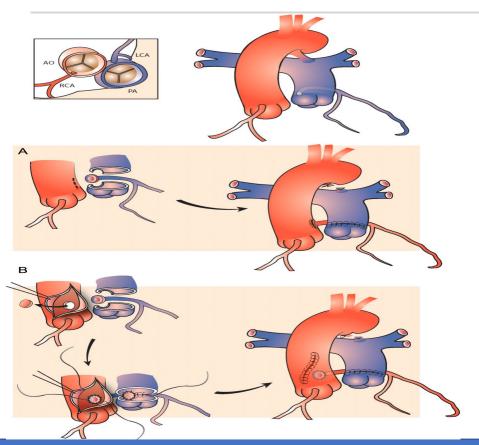
Infant type

INTRODUCTION DIAGNOSIS

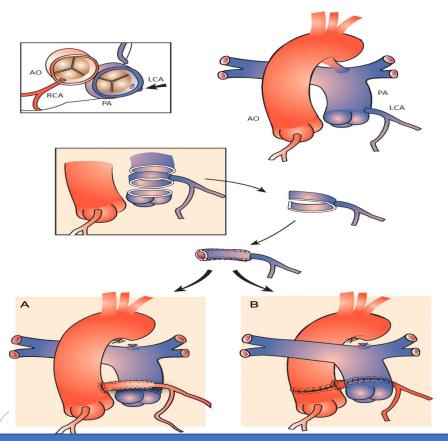
- Early diagnosis of ALCAPA remains a challenge because the patients has the lack of specificity in the clinical manifestations, which range from asymptomatic to severe myocardial ischemia, heart failure, and sudden death.
- Coordinate diagnostic imaging multimodalities such as ECG, echocardiography, cardiac CTA, CMR, DSA to confirm the diagnosis, help delineate the anatomy and origin of the anomalous coronary.
- Multiple techniques have been introduced to establish a dual-coronary artery system, including
 - ✓ direct reimplantation of the anomalous coronary artery into the aorta (DIACA).
 - ✓ coronary artery bypass grafting (CABG)
 - ✓ coronary baffling procedures

INTRODUCTIONSURGICAL OPTIONS

Type of Repair	Description	INDICATIONS
Direct reimplantation of the anomalous coronary artery into the aorta (DIACA)	Direct reimplantation of the anomalous artery into the aorta by transferring it with a button of the MPA	Used in infants; the most anatomic correction and yields excellent long-term results
Takeuchi procedure (transpulmonary baffling)	A baffle made from the PA wall is used to tunnel the coronary artery through the MPA into the left coronary ostium	Used in infants when coronary button transfer is not feasible due to unfavorable coronary anatomy
Coronary artery bypass grafting (CABG) combined with ligation of the anomalous LCA	A venous or arterial bypass graft is placed from the aorta to the proximal LAD artery, and the anomalous LCA is ligated at its pulmonary origin	Preferred technique in adults



INTRODUCTION Type of Repair


Surgical reimplantation of ALCAPA from the right facing sinus of Valsalva.

- A, Direct implantation into the ascending aorta.
- B, Direct implantation under direct vision via anterior aortotomy.
- · AO indicates aorta
- PA, pulmonary artery
- · LCA, left coronary artery
- RCA, right coronary artery
- ALCAPA, anomalous left coronary artery from pulmonary artery.

Karimi M. (2015), "Anomalous Origins of Coronary Arteries From the Pulmonary Artery: A Comprehensive Review of Literature and Surgical Options", *World J Pediatr Congenita Heart Surg*, 6(4) 526-540

Surgical reimplantation techniques of ALCAPA from nonfacing sinus of Valsalva.

A, Anterior direct reimplantation by creating cylindrical extension of the coronary artery.

B, Posterior direct reimplantation by creating cylindrical extension of the coronary artery and anterior translocation of PA (LeCompte maneuver) to avoid posterior compression of the implanted coronary artery.

AO indicates aorta
PA, pulmonary artery
LCA, left coronary artery
RCA, right coronary artery
ALCAPA, anomalous left coronary artery from pulmonary artery.

Karimi M. (2015), "Anomalous Origins of Coronary Arteries From the Pulmonary Artery: A Comprehensive Review of Literature and Surgical Options", *World J Pediatr Congenita Heart Surg*, 6(4) 526-540

OBJECTIVE

 This study aimed to describe the perioperative clinical features, ECG and transthoracic echocardiographic (TTE) presentations, surgical options and mid-term outcomes after surgical correction of ALCAPA in children at Children's Hospital 1 HCMC.

OBJECTIVES OF THE STUDY

Research on pediatric patients with ALCAPA at Children's Hospital 1:

- 1. Determine the preoperative clinical features, ECG and transthoracic echocardiographic (TTE) presentations and anatomical characteristics perioperation.
- 2. Determine the characteristics of surgery and the rate of complications during surgery.
- Determine the results of surgery through short-term and mid-term follow up: mortality
 rate, rate of complications (heart failure, pathological Q waves, LV function, mitral
 valve regurgitation, coronary arteries, supravalvular pulmonary stenosis)

METHODS

- Retrospective and prospective case-series study
- ❖ All of ALCAPA patients was operated at Children's Hospital 1 from June 2008 to June 2020.

SUBJECTS AND METHODS

All patients with ALCAPA undergoing surgery met the following criteria:

- ✓ ALCAPA patients are diagnosed by echocardiography, CCTA or ICA before treatment and the diagnosis were confirmed during surgery.
- ✓ There was a follow-up examination, echocardiography and electrocardiogram
 1 month after surgery.
- ✓ Parents/guardians agreed to participate.

Thay those tan tan - Chan man dat moc

SUBJECTS AND METHODS

DEFINITION OF VARIABLES

- **In-hospital:** post-operative period in the hospital after the patient is treated with surgery.
- **Short-term period:** from discharge post-operation to < 24 months after surgery (re-examination at 1 month, 3 months, 6 months, 12 months, 18 ± 3 months).
- **Mid-term period**: from 24 months to 11 years after surgery (re-examination every year, from 2 years to 11 years).
- Pathologic Q wave was defined by duration ≥ 0.03s, depth ≥ 3 mm/V1 or ≥ 2 mm/aVL

RESEARCH FLOWCHART

RETROSPECTIVE 6/2008 → 8/2014

- ICD10: Q24.5
- CICU, CATH LAB → ALCAPA operated

PROSPECTIVE 8/2014 → 6/2020

- Cardiology department/Neonatal department/ ICU/NICU
- Diagnosed ALCAPA

OPERATED ALCAPA

Meets inclusion criteria

DATA COLLECTION

- Objective 1 & 2
- Cinical features and cardiac imaging results (ECG, Chest XRay, TTE, CCTA, ICA)
- Anatomical characteristics ALCAPA pre-operative
- Characteristics of surgery and the rate of complications during surgery.

FOLLOW-UP POSTOPERATION

- Clinical examination evaluates heart failure
- Imaging: ECG, TTE, chest X-ray, CCTA/CMR/ICA when indicated.

Objective 3

SHORT-TERM FOLLOW UP (< 24 MONTHS) MID-TERM FOLLOW UP (≥ 24 MONTHS)

Heart failure, pathological Q waves, LV function, mitral valve regurgitation, coronary arteries, supravalvular pulmonary stenosis

ALCAPA: 51 CASES

- √10 cases: retrospective & prospective
- √41 cases: prospective
- ✓ Median follow-up
 duration: 36 (24 60)
 months, maximum 108
 months

ALCAPA 51 CASES

SHORT-TERM FOLLOW UP 1 month: N = 49

< 24 months: N = 41

In-hospital death: 2

cases

Late death: 1 case

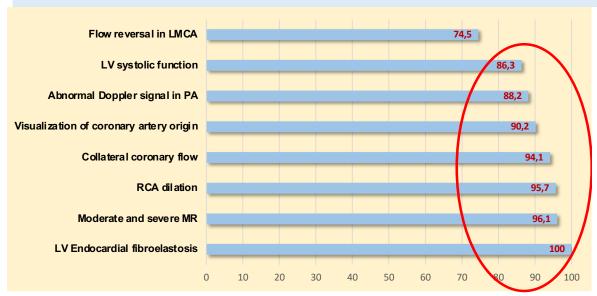
MID-TERM FOLLOW UP 24 months: N = 41

>= 5 yrs: N = 19

PREOPERATIVE FEATURES

	Naimo Phillip, 2015	Shivani, 2017	Hui-Li, 2017	Our study
N	42	37	50	51
Female	-	-	21 (42%)	27 (52,9%)
Age at operation (month)	4,7 (1,6 - 60)	10.5 (1.3 – 219)	37,2 (4 – 216)	4,5 (3,1 - 6,1)
Weight (Kg)	5,7 (2,3 – 23)	-	LVEF < 50% group: 8,8 ± 3,1 LVEF > 50% group: 20 ± 13	5,2 (4,8 - 6)
Infant type	34 (81%)	< 1 year group: 54%	LVEF < 50% group: 34 (68%)	44 (86,3%)
Severe HF	-	57%	-	49 (94,1%)
(ROSS grade III & IV)				
Pathologic Q wave			80%	50 (98%)

Johnsrude (1995), ECG → to distinguish Myocarditis and DCM from ALCAPA. Zheng Jian-yong (2010): wide Q/DI 81,3%, depth Q/aVL 100% infant group < 12 ms.

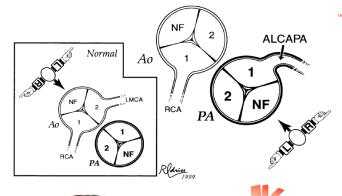

ECHOCARDIOGRAPHIC FINDINGS

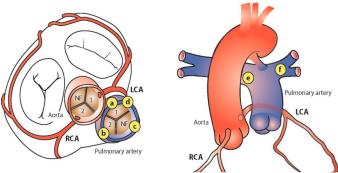
			V	1950
Echocardiographic markers	All patients (N = 51)	Infant type (N = 44)	Adult type (N = 7)	р
1. Visualization of coronary artery origin	46 (90,2%)	41 (93,2%)	5 (71,4%)	0,13
2. Abnormal Doppler signal in PA	45 (88,2%)	40 (90,9%)	5 (71,4%)	0,18
3. Flow reversal in LMCA	38 (74,5%)	35 (79,5%)	3 (42,9%)	0,06
4. Collateral coronary flow	48 (94,1%)	41 (93,2%)	7 (100%)	0,47
5. Z score RCA	5,41 ± 1,88	5,20 ± 1,51	6,73 ± 3,25	0,044
6. MR	51 (100%)	44 (100%)	7 (100%)	0,22
Moderate MR	44 (86,3%)	38 (86,4%)	6 (85,7%)	
Severe MR	5 (9,8%)	5 (11,4%)	0 (0%)	
7. LV systolic function	44 (86,3%)	44 (100%)	0 (0%)	
LVEF (%)	39,22 ± 14,20	35,02 ± 9,99	65,57 ± 4,96	
Z score LVEDD	5,53 ± 1,31	5,75 ± 1,18	4,2 ± 1,31	0,002
8. LV endocardial and papillary muscle fibroelastosis	51 (100)	44 (100)	7 (100)	



PREOPERATIVE ECHOCARDIOGRAPHY

INCIDENCE OF ECHOCARDIOGRAPHIC MARKERS OF ALCAPA


Shivani GP (2017), *J Am Soc Echocardiogr*, 30(9): N = 37, presenting echocardiograms had **five of seven** markers in **85%** of patients. Rong-Juan Li (2016), *Medicine (Baltimore)*, 95(15): **5/8** makers in **77,3%**

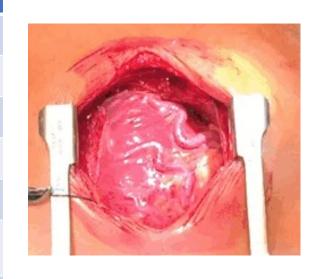


ANATOMICAL CHARACTERISTIC ALCAPA

Location of origin of the	TTE	ССТА	ICA	Operation
ALCAPA	(N = 51)	(N = 26)	(N = 10)	(N = 51)
Right facing sinus of Valsalva, (n,%)	42 (82,4)	19 (73,1)	8 (80)	38 (74,5)
Nonfacing sinus of Valsalva, (n,%)	2 (3,9)	0 (0)	0 (0)	3 (5,9)
Posterior intercommissural region, (n,%)	5 (9,8)	1 (3,8)		4 (7,8)
MPA (n,%)	2 (3,9)	6 (23,1)	2 (20)	6 (10)

Kudumula Vikram (2014), *Ann Thorac Surg*, 97(3): N1 sinus of PV: **15 (60%)** Weigand Justin (2015), *Pediatr Cardiol*, 36(3), pp. 489-97: N1 sinus of PV: **23 (52%)**

Karimi M. (2015), *World J Pediatr Congenita Heart Surg*, 6(4) 526-540


TTE: Transthoracic echocardiography

CCTA: Coronary computed tomography angiography

ICA: Invasive coronary angiography

CHARACTERISTICS OF ALCAPA SURGER

SURGICAL OPTIONS	Result (N = 51)
Re-establish dual-coronary artery system	51 (100%)
 Coronary button transfer 	38 (74,5%)
 Coronary button transfer with PA flap 	13 (25,5%)
MV repair in initial operation	3 (5,9%)
Ventricular fibrillation durring surgery	20 (39,2%)
	` '
Cross-clamp time (min)	61,5 ± 28,1
CPB time (min)	126,5 ± 26,5

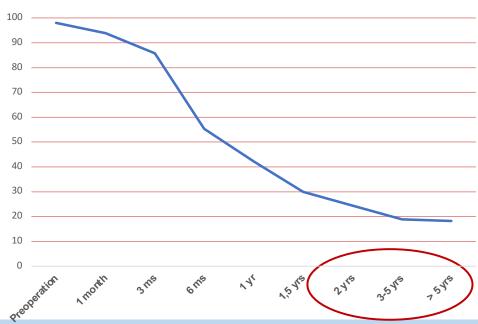
Coronary button transfer procedure

- Azakie (Toronto, 2003): 47/67 (70%)
- Turley (1995), Barth: Coronary button transfer and tubular reconstruction, reduce anastomotic tension, reduce coronary artery stenosis and PA stenosis.

❖ MV repair

Isomatsu (Japan): 3,7%, annuloplasty)/severe MR

POSTOPERATIVE/CICU - MORTALITY

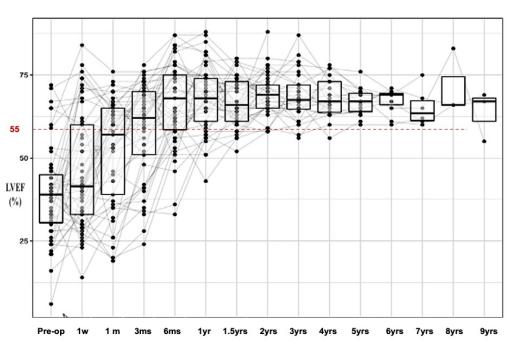

Postoperative characteristics	Result (N = 51)	Thay thuốc tạn tạn - Cham màn
Postoperative ICU stay (day), median (range)	9 (7 - 13)	
Postoperative ventilation time (h), median (range)	120 (76 - 168)	 Postoperative ICU stay: Hui-Li (China, 2017): 96 (45 - 720) hours Ojala Tiina (Finland, 2010): 8 ds
Prolonged mechanical ventilation ≥ 5 ds, n (%)	44 (86,3%)	❖ Mechanical ventilation time:
Low cardiac output syndrome (n,%)	19 (37,3%)	 Hui-Li (China, 2017): 49,5 (10 - 504) hours
Postoperative ventricular arrhythmia	11 (21,6%)	 Low cardiac output syndrome (LCOS) Samuel (Mexico, 2011): 38%
Duration of inotropic support (h), median (range)	156 (112 – 196)	❖ Early mortality:
Prolonged duration of inotropic support ≥ 6 ds, n (%)	31 (60,8%)	 Naimo Philip (Australia, 2015): 1/42 (2,4%) Yan Gao (China, 2017): 2/26 (7,6%)
Mortality		 Late mortality: Yan Gao (China, 2017): 1/26 (3,8%)
Early mortality (n,%)	2 (3,9%)	• Antonio (2015): 1/34 (3%)
Late mortality (n,%)	1 (1,9%)	

PROGRESSION OF PATHOLOGIC Q WAVE AFTER ALCAPA SURGERY

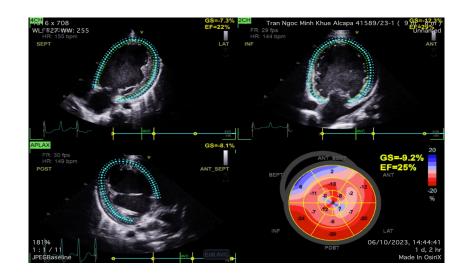
- ❖ Pathologic Q wave recovers slowly, after > 5 years: 18.2%, slower than other studies even though we follow-up longer
- ❖ Zheng Jian-yong (2010), Chin Med J (Engl), 123(20): pathologic Q wave disappeared by mean follow up time 17 ms (6 - 166)
- Hsin-Hui (2008), Eur J Pediatr, 167(11): 13 patients, pathologic Q waves disappeared after median of 20 months (1 48)

LEFT VENTRICLE FUNCTION

	Antonio, 2015	Muna, 2020	Our study
N	34	29	51
Follow up time (month)	72 (1 – 168)	$60 \pm 43,2$	36(24-60)
Z score LVEDD			
Preoperation	6 ± 3.8	$5,7 \pm 2,8$	5,53 ± 1,31
Last examination	0.9 ± 0.7	$0,1 \pm 0,7$	0,11 ± 0,65
LVFS (%)			
Preoperation	25 ± 14	15 ± 10	18,86 ± 8,18
Last examination	38 ± 5	$37 \pm 3,1$	36 ± 2,8
LVEF (%)			
Preoperation	21 ± 6	34 ± 17	39,22 ± 14,2
Last examination	60 ± 7	$63 \pm 4,1$	67,1 ± 3,7

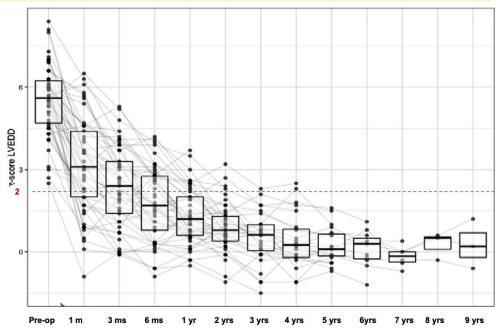

LVEF: Left ventricular ejection fraction

LVEDD: Left ventricle end-diastolic dimension LVFS: Left ventricular fractional shortening


LEFT VENTRICLE FUNCTION

Progression of LVEF after ALCAPA sugery

LVEF recovered quickly in the first 6 months after surgery and the curve stabilized to normal values after 6 months.



LVEF: Left ventricular ejection fraction

LEFT VENTRICLE FUNCTION

Progression of LVEDD Z score after ALCAPA sugery

LVEDD Z score decreased rapidly in the first 6 months after surgery, and LVEDD reached to almost normal value 1 year after surgery.

The LVEDD Z score recovered more slowly than LVEF because the LV were dilated due to mitral valve regurgitation.

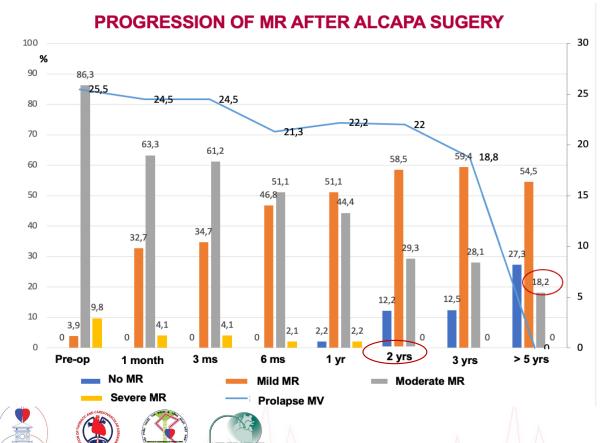
Mid-term follow-up showed that LVEDD Z score recovered to normal value, approximately 0 value about 4 - 5 years after surgery.

LVEDD: Left ventricle end-diastolic dimension

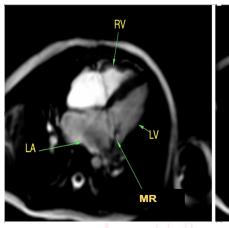
Recovery time of LVEF in infant type group

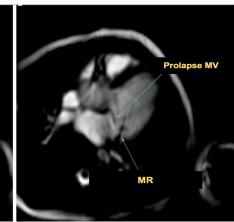
	Justin, 2015	Yan Gao, 2017	Muna, 2020	Our study
N	44	26	29	44
Follow up time (month)	32 (17 – 114)	40 (3 – 96)	60 ± 43,2	36 (24 – 60)
LVEF recovery time (month)	3,03 (0,17 – 14,3)	5,3 (0,5 – 36)	1,5 – 12	3,0 (1,0 – 6,1)

• Infant type group (N = 44)


✓ ≥ 6 months: 92,9% LVEF normalized

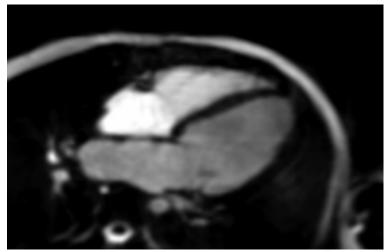
√12 months: 100% LVEF recovered as normal value


Deepa Sasikumar (2018), Interact Cardiovasc Thorac Surg, 27(2): 3 months, 88%
 LV function normalized

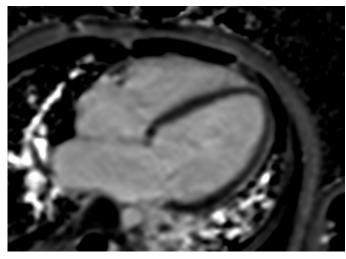


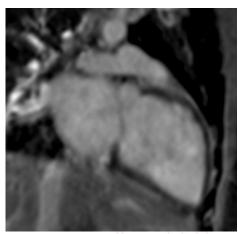
MITRAL REGURGITATION

- LV endocardial and papillary muscle **fibroelastosis**
- ✓2 years: 100% patients
- $\sqrt{5}$ 9 years: 81,8% patients
- Vladimir Alexi (2011): 57%, LV myocardial scarring/CMR

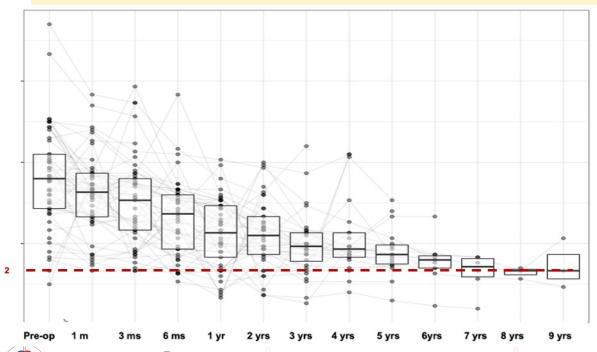







RESULTS: MR/CMR

MITRAL REGURGITATION


	John Brown, 2008	Vikram Kudumula, 2014	Antonio Cabrera, 2015	Our study
N	25	25	34	51
Follow up time (months)	84 (1 – 192)	93 (9 – 240)	72 (1 – 168)	36 (24 – 60)
MR (n,%)				
No MR		8/21 (38,1%)	12/17 (71%)	4/32 (12,5%)
Mild MR	22 (88%)	9/21 (42,9%)	5/17 (29%)	19/32 (59,4%)
Moderate MR	2 (8%)	4/21 (19%)	9 (26%)	9/32 (28,1%)
Severe MR	1 (4%)	0	2 (6%)	0%
MV repair				
Initial operation	0%	4 (16%)	5 (15%)	3 (5,9%)
Re-operation	3 (12%)		1 (3%)	0%

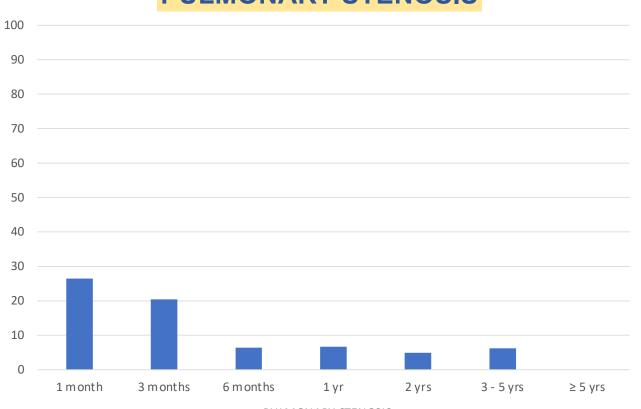
• Deepa Sasikumar (2018), *Interact Cardiovasc Thorac Surg*, 27(2): the rate of MV repair in older group (25%) **higher than** < 1 year group (5,9%)

CORONARY ARTERY

PROGRESSION OF Z SCORE RCA POSTOPERTIVE

❖Left coconary artery:

- ✓ No LCA stenosis
- ✓ No fistula/baffle leak
- **❖**RCA compensatory dilation
- Gradually reduce size after surgery
- Did not return to normal size



PULMONARY STENOSIS

❖ The rate of PS:

- Guido Michielon (2003),
 Ann Thorac Surg, 76(2):
 3/31 (9,7%)
- Yan Gao (2017), Chin Med
 J (Engl), 130(19): 6/26
 (26,1%)

CONCLUSIONS

The study of **51 ALCAPA patients** underwent surgery at Children's Hospital 1 with a median followup time of **36 (24 - 60) months**, maximum **108 months**.

- ✓ The median age at surgery: 4,5 (IQR: 3.1-6.1) months, median weight: 5.2 (IQR: 4.8-6) Kg.
- ✓ Infant types were the majority and the rate of severe heart failure before surgery is high
- ✓ Combination echocardiographic makers of ALCAPA and ECG were valuable in diagnosis
- ✓ MV annuloplasty: 3 (5.9%) at initial ALCAPA repair.
- ✓ The rate of early complications were high
 - Ventricular fibrillation 39.2%,
 - Low cardiac output syndrome 37.3%

CONCLUSIONS

>Short-term follow up

- ✓ Mortality rate 5,9%
- ✓ All children had no symptoms of heart failure and restored LV function on echocardiography
- ✓ LVEF normalized at a median of 3.0 (IQR: 1.0 6.1) months.

➤ Mid-term follow up

- ✓ All children were free of pulmonary valve stenosis
- √18,2% of patients had pathologic Q waves and moderate MR persisted for more than 5 years post-operation
- ✓ Most of the patients (81.8%) remained with enhanced echogenicity of papillary muscles and LV endocardium
- √ The RCA dilation was prolonged for more than 5 years post-operation

THANK YOU FOR YOUR ATTENSION!

